Optical Properties of Solids: Lecture 6

Stefan Zollner

New Mexico State University, Las Cruces, NM, USA and Institute of Physics, CAS, Prague, CZR (Room 335) <u>zollner@nmsu.edu</u> or <u>zollner@fzu.cz</u>

These lectures were supported by

- European Union, European Structural and Investment Funds (ESIF)
- Czech Ministry of Education, Youth, and Sports (MEYS), Project IOP Researchers Mobility – CZ.02.2.69/0.0/0.0/0008215

Thanks to Dr. Dejneka and his department at FZU.

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

http://ellipsometry.nmsu.edu

NSF: DMR-1505172

Optical Properties of Solids: Lecture 5+6

- Lorentz and Drude model: Applications
- 1. Metals, doped semiconductors
- 2. Insulators
- Sellmeier equation, Poles, Cauchy dispersion Analytical properties of ϵ

References: Dispersion, Analytical Properties

Standard Texts on Electricity and Magnetism:

- J.D. Jackson: *Classical Electrodynamics*
- L.D. Landau & J.M. Lifshitz, Vol. 8: *Electrodynamics of Cont. Media*

Ellipsometry and Polarized Light:

- R.M.A. Azzam and N.M. Bashara: *Ellipsometry and Polarized Light*
- H.G. Tompkins and E.A. Irene: Handbook of Ellipsometry (chapters by Rob Collins and Jay Jellison)
- H. Fujiwara, Spectroscopic Ellipsometry
- Mark Fox, Optical Properties of Solids
- H. Fujiwara and R.W. Collins: Spectroscopic Ellipsometry for PV (Vol 1+2)
- Zollner: *Propagation of EM Waves in Continuous Media* (Lecture Notes)
- Zollner: Drude and Kukharskii mobility of doped semiconductors extracted from FTIR ellipsometry spectra, J. Vac. Sci. **37**, 012904 (2019).

Drude-Lorentz Model: Free and Bound Charges

- w_P (unscreened) plasma frequency of free charges
 w₀ resonance frequency of bound charges
- g_D, g_0 broadenings of free and bound charges
- A **amplitude** of bound charge oscillations (density, strength)

Discuss plasma frequency trends.

 $n_f e^2$

me

Drude-Lorentz Model: Free and Bound Charges

Stefan Zollner, February 2019, Optical Properties of Solids Lecture 6

5

Semiconductors

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
1	1 1 H Hydrogen 1.00794	Atomic # Symbol Name Atomic Mass	С	C Solid			Metals					Nonmetals						2 2 He Helum 4.002002	К
2	3 7 Li Lithium 0.941	4 2 Be Beryllium 9.012182	Hg H	Liquid Gas		Alkali me	Alkaline earth me	Lanthanoid	metals	Poor met	Other nonmetal	Noble ga	5 B Boron 10.811	6 4 C Carbon 12.0107	7 5 N Nitrogen 14.0067	8 6 O Dxygen 15,9994	9 † Filonine 18.9964032	10 0 Neon 20.1797	K L
3	11 Na Sodium 22.98976928	12 Mg Magnesium 24.3050	Rf	Rf Unknown		al a		Actinoids		als	0 O V		13 Al Aluminium 26.9815388	14 Si Silcon 28.0855	15 2 P Phosphorus 30.973762	16 2 S Sulfur 32.065	17 29 Cl Chlorine 35.453	18 Ar Argon 39.548	X-L
4	19 28 K 1 Potassium 39.0993	20 68 20 20 20 20 20 20 20 20 20 20 20 20 20	21 50 Scandum 44.955912	22 8 Ti Titanium 47.887	23 Vanadium 50.9415	24 24 2 Cr 51.9961	25 Mn Manganese 54.938045	² ² ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰	27 18 18 18 18 18 18 18 18 18 18 18 18 18	28 Ni Nickel 58.8934	29 Cu Copper 63.546	30 Zn 2mo 05.38	31 Ga Gallum e9.723	32 Ge Germanium 72.64	33 ² As Arsenic 74,92180	34 28 See 5 Selenium 78.96	35 19 Br Bromine 79.904	36 Kr Krypton 63.798	K-UNN
5	37 18 Rb Rubidium 85.4878	38 Sr Strontium 87.82	39 18 Y 192 Yttnum 88.90585	40 50 50 50 50 50 50 50 50 50 50 50 50 50	41 Nb Nobium 52.90538	42 Mo Molybdenum 95.98	43 TC Technetium (97.9072)	44 Ruthenium 101.07	45 88 100 100 100 100 100 100 100 100 100	46 Pd Palladium 106.42	47 Ag Silver 107.8862	48 Cd 19 Cadmium 112.411	49 In Indium 114.818	50 Sn Tie 118.710	51 8 Sb 8 Antimony 121.760	52 5 Te 5 Telunum 127.60	53 8 odme 125.90447	54 Xe Xeron 131 293	OXELA
6	55 28 Csesium 132,9054519	56 88 18 18 18 18 18 18 18 18 18 18 18 18	57–71	72 ************************************	73 Ta Tantalum 180.94788	74 W 12 Tungsten 183.84	75 Re Rhenium 186.207	76 05 05 05 05 190.23	77 28 17 18 17 192.217 28 29 20 20 20 20 20 20 20 20 20 20	78 Pt Platinum 195.084	79 18 17 1 10 10 10 10 10 10 10 10 10 10 10 10 1	80 20 20 20 20 20 20 20 20 20 20 20 20 20	81 Ti Thailium 204.3833	Pb Lead 207.2	83 ² Bi ¹⁵ Biemuth ⁵ 208.98040	84 28 Polonium (208.9624)	85 88 At 18 Astatine (209.8871)	86 Rn Radon (222.0176)	K-UNOP
7	87 28 Fr 18 Francium 8 (223)	88 22 Ra 15 Radium 22 (220)	89–103	104 ************************************	105 Db Dubnum (262)	106 Sg Seaborgium (286)	107 Bh Bohrium (284)	108 Hs Hassium (277)	109 18 22 Metnerium 15 2 (256)	110 DS Damstadium (271)	111 82 82 82 11 1 1 1 1 1 1 1 1 1 1 1 1	112 Ununbium (285)	113 Uut Ununtrium (2H4)	114 Uuq Uhurquadum (289)	115 Uuppertum (288)	116 Ununhesium (292)	117 Uus Uhurseptum	118 Uuo Ununootium (294)	0.002Erx
				For elements with no stable isotopes, the mass number of the isotope with the longest half-life is in parentheses.															
				Design and Interface Copyright © 1997 Michael Dayah (michael@dayah.com). http://www.ptable.com/															
	Dta	blo		57 58 La 18 Lanthanum 138.90647	58 Ce Cerium 140.115	59 Pr 10 Paseotymium 140.90765	60 Nd Neodymium 144.242	61 5 Pm 23 Promethium 2 (145)	62 58 Sm 53 Samarium 150.36	63 Eu Europium 151.904	64 Gd Oadolinium 157.25	65 Tb Terbium 158.92535	66 Dy Dysprosium 162.500	67 Ho Holmium 164.93032	68 2 Er 30 Erbium 2 107.259	69 53 Tm 55 Thulum 108.93421	70 10 10 10 10 10 10 10 10 10 10 10 10 10	71 Lu Lutetium 174.9008	A DESCRIPTION OF THE OWNER OF THE
		com		89 15 15 16 15 16 15 16 15 16 16 16 16 16 16 16 16 16 16 16 16 16	90 Th Thorium 232.03806	91 Pa Protactinium 231.03568	92 Uranium 238.02891	93 Np (237)	94 10 10 10 10 10 10 10 10 10 10 10 10 10	95 Am Americium (243)	96 Cm Curium (247)	97 Bk (247) 97 10 10 10 10 10 10 10 10 10 10	98 Cf Californium (251)	99 Es Einsteinium (252)	100 100 Fm 30 Fermium 2 (257)	101 101 10 Md 10 Mendelevium 10 (258)	102 15 15 15 15 15 15 15 15 15 15 15 15 15	103 Lr Lawrencium (262)	No. of Concession, Name

Free-Carrier Reflection in doped semiconductors

Doped semiconductors behave just like a metal, except for the lower carrier density; **plasma frequency in infrared region.**

Fox, Optical Properties of Solids

Infrared ellipsometry of doped semiconductors

Doped semiconductors behave just like a metal, except for the lower carrier density; plasma frequency in infrared region. Only visible for electrons (small mass). Stefan Zollner, February 2019, Optical Properties of Solids Lecture 6 8

Infrared ellipsometry of doped semiconductors

$$\varepsilon(\omega) = 1 - \frac{\omega_P^2}{\omega^2 + i\gamma\omega}$$

30 meV lower cut-off insufficient to see Drude term.

Plasmon effect:

Doping pushes LO phonon to

higher energies.

Doped semiconductors behave just like a metal, except for the lower carrier density; plasma frequency in infrared region.

Optical Hall Effect: Ellipsometry with magnetic field

If we measure Mueller matrix spectra in a magnetic field, we get **carrier concentrations, mobilities, effective masses**.

Multi-valley semiconductors

GaSb is a direct semiconductor (like GaAs), but ALMOST indirect. The L-valley in GaSb is only **80 meV** above the Γ -valley. Almost all electrons are in the L-valley at room temperature.

Multiple Drude Contributions

- Electron mass depends on orbital (s, p, d, f)
 s: light (small mass m*<<1)
 p: intermediate (m*~0.3 to 1)
 d,f: heavy (large mass m*>>1)
 p,d,f: usually anisotropic
- Electrons and holes
- Different CB minima (Γ,L,X)
- Different VB hole bands (light, heavy, split-off)

P. Drude, Phys. Z. 1, 161 (1900).

CB: Conduction band (empty)

Drude Model for Anisotropic Free Carriers

Conduction band minima in Ge and Si are anisotropic. Ge: m_1 =1.59, m_t =0.0815.

$$E\left(\vec{k}\right) = \frac{\hbar^{2}\vec{k}^{2}}{2m}$$

$$m^{-1} = \frac{1}{\hbar^{2}} \frac{\partial^{2} E\left(\vec{k}\right)}{\partial \vec{k}^{2}} = \begin{pmatrix} m_{l}^{-1} & 0 & 0\\ 0 & m_{t}^{-1} & 0\\ 0 & 0 & m_{t}^{-1} \end{pmatrix}$$

$$m = \frac{3m_{l}m_{t}}{m_{t} + 2m_{l}}$$

$$\Delta \text{-valley}$$
Drude mass

Valence band maxima in semiconductors are warped (Luttinger parameters).

$$\varepsilon(\omega) = 1 - \frac{\omega_P^2}{\omega^2 + i\gamma\omega}$$
$$\omega_P^2 = \frac{nq^2}{m\varepsilon_0}$$
 Charge density

Drude formula still valid, but $\epsilon, \, \varpi_p{}^2, \, m^{-1},$ and γ are tensors.

P. Drude, Phys. Z. 1, 161 (1900).

Grey α -tin is even more complicated

Add strain and warping in Sn_{1-x}Ge_x alloys

How do we model Drude response of free carriers with realistic band structures?

Semiclassical Model of Electron Dynamics

"Electrons move along curves given by the intersection of surfaces of constant energy with planes perpendicular magnetic field." Is there an **optical analog to Shubnikov-de Haas effect? (Ge-Sn, GaSb)**

How do we model Drude response of free carriers with realistic band structures?

Anisotropic masses (GaSb L-valley)

- Longitudinal mass at L Transverse mass at L
- Density of states mass (geometric mean)
- **Drude transport mass** (harmonic mean)
- Cyclotron mass

- $m_1 = 0.95$ m_t=0.11 $m_d = \sqrt[3]{N_V^2 m_l m_t^2}$ m_d=0.57 **m**_D=0.15 $\frac{3}{m_D} = \frac{1}{m_l} + \frac{2}{m_t}$ $m_c = \sqrt{\frac{\det \vec{m}}{\vec{b} \cdot \vec{m} \cdot \vec{b}}}$
- Optical Hall effect measurements on anisotropic materials are sparse. Need measurements on bulk Si, Ge, GaP with different orientations (change direction of magnetic field). How about SiC?

Dresselhaus, Dresselhaus, Cronin, Gomes, Solid-State Properties (10.50)

Cyclotron Resonance

Measure microwave absorption as a function of the magnetic field. Information about VB warping.

Insulators

Multiple Lorentz Contributions: IR, UV, x-ray

IR: lattice vibrations

VIS/UV: valence electrons (usually broadened by band structure effects)

x-ray: core electrons

Amplitude depends on

- Density of oscillators
- Matrix elements
- Born effective charge

Fox, Fig. 2.6

Multiple Lorentz Contributions: SiO₂ as an Example

IR: lattice vibrations (Si-O bend, stretch)

VIS: Nothing happens

UV: valence electrons (interband transitions)

x-ray: core electrons (absorption edges)

Amplitude depends on

- Density of oscillators
- Matrix elements
- Born effective charge

Poles, Sellmeier Approximation

Refractive index

Set g=0 far from resonance. Lorentz oscillator becomes a **pole**

$$\varepsilon(\omega) = 1 + \frac{A\omega_0^2}{\omega_0^2 - \omega^2}$$

Rewrite as a function of I

$$\varepsilon(\lambda) = 1 + \frac{B\lambda^2}{\lambda^2 - C}$$

Several Lorentz oscillators (one in IR, two in UV)

$$\varepsilon(\lambda) = 1 + \sum_{i} \frac{B_i \lambda^2}{\lambda^2 - C_i}$$

Sellmeier approximation.

Stefan Zollner, February 2019, Optical Properties of Solids Lecture 6

Fox, Fig. 2.10

22

Cauchy Equation (Urbach Tail)

The Cauchy equation

$$n(\lambda) = \sqrt{\varepsilon(\lambda)} = A + \frac{B}{\lambda^2} + \frac{C}{\lambda^4}$$

can be viewed as a Laurent series expansion of the Sellmeier equation

$$n(\lambda) = \sqrt{\varepsilon(\lambda)} = \sqrt{1 + \frac{B\lambda^2}{\lambda^2 - C}}$$

Comments:

The Cauchy equation does not include absorption and therefore is not Kramers-Kronig consistent. Absorption is often included with an Urbach tail

$$k(E) = \alpha e^{\beta(E-\gamma)}$$

but this still does not make it Kramers-Kronig consistent. Not recommended, use Tauc-Lorentz model instead.

Insulator Phonon Spectra (Ge)

Infrared Lattice Vibrations (Lorentz model)

In **polar materials** (Born effective charge), TO and LO modes are split. TO: transverse optical (displacement perpendicular to **k**) LO: longitudinal optical (displacement along **k**) ε_2 has peak at TO frequency ε_1 is negative from TO to LO frequency (reflectance is 1)

Infrared Lattice Vibrations (Lorentz model)

In polar materials (Born effective charge), TO and LO modes are split. TO: transverse optical (atomic displacement perpendicular to **k**) LO: longitudinal optical (atomic displacement along **k**) ε_2 has peak at TO frequency ε_1 is negative from TO to LO frequency (reflectance is 1) Restrahlen band extends from TO to LO energy.

$$\varepsilon(\omega) = \varepsilon_{\infty} + \frac{A\omega_0^2}{\omega_0^2 - \omega^2 - i\gamma_0\omega}$$
ids Lecture 6 26

Infrared Lattice Vibrations in GaP

Stefan Zollner, February 2019, Optical Properties of Solids Lecture 6

27

Infrared Lattice Vibrations (Lorentz model)

Lyddane Sachs Teller relation (Lorentz model)

Lyddane Sachs Teller relation (Lorentz model)

Lorentz model (γ =0) for one TO/LO phonon mode

$$\varepsilon(\omega) = \varepsilon_{\infty} + \frac{A\omega_0^2}{\omega_0^2 - \omega^2}$$

At zero frequency (ω =0) define static dielectric constant ϵ_s

$$\varepsilon_{\rm S} = \varepsilon(\omega = 0) = \varepsilon_{\infty} + A$$

Define ω_{LO} through $\varepsilon(\omega_{LO})=0$ (Longitudinal modes require $\varepsilon=0$).

$$0 = \varepsilon_{\infty} + \frac{A\omega_0^2}{\omega_0^2 - \omega_{LO}^2}$$

Generalized Lyddane Sachs Teller relations

Multiple phonon modes (isotropic)

$$\frac{\varepsilon_{\rm S}}{\varepsilon_{\infty}} = \prod_{i} \frac{\omega_{LO,i}^2}{\omega_{TO,i}^2}$$

Kurosawa, J. Phys. Soc. Jpn. **16**, 1298 (1961)

Anisotropic crystals

$$\frac{\det(\varepsilon_{\rm S})}{\det(\varepsilon_{\infty})} = \prod_{i} \frac{\omega_{LO,i}^2}{\omega_{TO,i}^2}$$

Mathias Schubert, Phys. Rev. Lett. 117, 215502 (2016)

Amorphous materials and liquids

$$\frac{\varepsilon_{\rm S}}{\varepsilon_{\infty}} = \frac{\langle \omega^2 \rangle_l}{\langle \omega^2 \rangle_t}$$

A.J. Sievers and J.B. Page, Infrared Physics **32**, 425 (1991)

Infrared Lattice Vibrations (NiO)

Infrared Lattice Vibrations (NiO)

- •Rocksalt Crystal Structure (FCC), Space Group 225 (Fm-3m).
- Single TO/LO phonon pair.
- •Antiferromagnetic ordering along (111), should cause phonon splitting (8-30 cm⁻¹).
- Second-order phonon absorption.

NiO cell

Two-phonon absorption (diamond)

A single photon excites two phonons. Energy and wave vector conserved. Two-phonon absorption is weak (lower probability than TO phonon absorption). Most likely to occur near Brillouin zone boundary (high density of states).

 J.R. Hardy and S.D.Smith, Phil. Mag. 69, 1163 (1961)

 Stefan Zollner, February 2019, Optical Properties of Solids Lecture 6

Two-phonon absorption (GaP)

Phonons in complex oxides: Perovskites

5 atoms (SrTiO₃), 4 optical phonons at Γ , $3\Gamma_{15}(IR)+\Gamma_{25}(silent)$

Hard and soft phonons

Typical behavior: **Hard** Phonon energy decreases with temperature.

Anomalous: **Soft** Phonon energy goes to zero at low temperature, **drives a phase transition** (collective movement of atoms)

SrTiO₃ is nearly ferroelectric ($T_c \sim 0$ K).

LST relation
$$\varepsilon_{\rm S} \omega_{T0}^2 = \varepsilon_{\infty} \omega_{L0}^2$$

NM State

V.N. Denisov, Physics Reports **151**, 1 (1987) Stefan Zollner, February 2019, Optical Properties of Solids Lecture 6

Phonons in more complex oxides (bulk)

Far-infrared ellipsometry (bulk LSAT)

Disordered double perovskite $(LaAIO_3)_{0.3}(Sr_2AITaO_6)_{0.35}$ Many phonon modes. Several reststrahlen bands.

T.N. Nunley, JVSTA 34, 051507 (2016)

Phonons in more complex oxides (Co_3O_4 on spinel)

cture 6

Kramers-Kronig Relations

$$\vec{P}(\vec{r},t) = \varepsilon_0 \int \chi_e(\vec{r}' - \vec{r},t' - t)\vec{E}(\vec{r}',t')dt'd^3\vec{r}'$$

Response function $\chi_e(\vec{r}' - \vec{r}, t' - t) = 0$ for t' > tThe charges cannot move before the field has been applied. Kramers-Kronig relations follow: $\int \frac{\mathrm{Im}\,\omega}{\omega' - \omega} d\omega' = 0$

$$\vec{D}\left(\vec{k},\omega\right) = \varepsilon_0 \varepsilon\left(\vec{k},\omega\right) \vec{E}\left(\vec{k},\omega\right)$$

$$\varepsilon_{1}(\omega) - 1 = \frac{2}{\pi} \wp \int_{0}^{\infty} \frac{\omega' \varepsilon_{2}(\omega') d\omega'}{\omega'^{2} - \omega^{2}}$$
$$\varepsilon_{2}(\omega) = -\frac{2\omega}{\pi} \wp \int_{0}^{\infty} \frac{\varepsilon_{1}(\omega') d\omega'}{\omega'^{2} - \omega^{2}}$$

Contour integrals in complex plane: The real part of ε can be calculated if the imaginary part is known (and vice versa).

Re ω'

 $(\mathbf{0})$

Similar Kramers-Kronig relations for other optical constants.

Cauchy

Analytical Properties of the Dielectric Function

Fields **E**(**r**,t) are real quantities

Onsager relation Dielectric tensor symmetric (B=0) Also from energy density. Passive materials (no optical gain)

$$\varepsilon \left(-\vec{k}, -\omega \right) = \overline{\varepsilon \left(\vec{k}, \omega \right)}$$
$$\varepsilon \left(-\omega \right) = \overline{\varepsilon \left(\omega \right)}$$
$$\varepsilon \left(-\vec{k}, \omega \right) = {t \atop \varepsilon \left(\vec{k}, \omega \right)}$$
$$\varepsilon \left(\omega \right) = {t \atop \varepsilon \left(\omega \right)}$$

 $\varepsilon_2(\omega) \ge 0$

Like any analytic complex function, $\epsilon(\omega)$ is defined by its zeroes and poles in the complex plane (below real axis). This implies

$$\varepsilon(\omega) = \varepsilon_{\infty} \prod_{j=1}^{N} \frac{\omega_{\text{LO},j}^2 - \omega^2 - i\gamma_{\text{LO},j}\omega}{\omega_{\text{TO},j}^2 - \omega^2 - i\gamma_{\text{TO},j}\omega}$$

R. P. Lowndes, PRB **1**, 2754 (1970).

 γ >0 (causality)

Works well for phonons and plasmons.

Also: Berreman & Unterwald, Phys. Rev. **174**, 791 (1968); Zollner, JVST B (2019).

Comparison of Lorentz and Lowndes Models

Drude-Lorentz Model

$$\varepsilon(\omega) = 1 - \sum_{i} \frac{\omega_{P,i}^2}{\omega^2 + i\gamma_{D,i}\omega} + \sum_{i} \frac{A_i \omega_{0,i}^2}{\omega_{0,i}^2 - \omega^2 - i\gamma_{0,i}\omega}$$

Lowndes Model

$$\varepsilon(\omega) = \varepsilon_{\infty} \prod_{j=1}^{N} \frac{\omega_{\text{LO},j}^2 - \omega^2 - i\gamma_{\text{LO},j}\omega}{\omega_{\text{TO},j}^2 - \omega^2 - i\gamma_{\text{TO},j}\omega}$$

R. P. Lowndes, PRB **1**, 2754 (1970).

Drude terms: Poles on the imaginary axis ($\omega_0=0$) Additional broadening parameter for LO phonon. **Lorentz identical to Lowndes model, if** $\omega_{TO}=\omega_{LO}$. Otherwise: **Frictional force allowed to vary with velocity.** Complex Lorentz amplitude, frequency-dependent damping. Lowndes model makes no assumptions about forces.

Berreman & Unterwald, Phys. Rev. 174, 791 (1968).

Summary

- Drude model explains optical response of metals.
- High reflectance below the plasma frequency.
- Interband transitions overlap with Drude absorption.
- Doped semiconductors have infrared plasma frequencies.
- Lorentz model explains infrared lattice absorption.
- TO/LO modes result in reststrahlen band.
- Multiple modes for complex crystal structures.

